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ABSTRACT 
 
The recently developed contour method can measure 2-D, cross-sectional residual-stress map. A part is cut in 
two using a precise and low-stress cutting technique such as electric discharge machining. The contours of the 
new surfaces created by the cut, which will not be flat if residual stresses are relaxed by the cutting, are then 
measured and used to calculate the original residual stresses. 
 
The precise nature of the assumption about the cut is presented theoretically and is evaluated experimentally. 
Simply assuming a flat cut is overly restrictive and misleading. The critical assumption is that the width of the cut, 
when measured in the original, undeformed configuration of the body is constant. Stresses at the cut tip during 
cutting cause the material to deform, which causes errors. The effect of such cutting errors on the measured 
stresses is presented.  The important parameters are quantified. Experimental procedures for minimizing these 
errors are presented.  An iterative finite element procedure to correct for the errors is also presented. The 
correction procedure is demonstrated on experimental data from a steel beam that was plastically bent to put in a 
known profile of residual stresses. 
 
INTRODUCTION 
 
Residual stresses play a significant role in many material failure processes like fatigue, fracture, stress corrosion 
cracking, buckling and distortion [1]. Residual stresses are the stresses present in a part free from any external 
load, and they are generated by virtually any manufacturing process. Because of their important contribution to 
failure and their almost universal presence, knowledge of residual stress is crucial for prediction of the life of any 
engineering structure. However, the prediction of residual stresses is a very complex problem. In fact, the 
development of residual stress generally involves nonlinear material behavior, phase transformation, coupled 
mechanical and thermal problems and also heterogeneous mechanical properties. So, the ability to accurately 
quantify residual stresses through measurement is an important engineering tool.  
 
Recently, a new method for measuring residual stress, the contour method [2-4], has been introduced. In the 
contour method, a part is carefully cut in two along a flat plane causing the residual stress normal to the cut plane 
to relax. The contour of each of the opposing surfaces created by the cut is then measured. The deviation of the 
surface contours from planarity is assumed to be caused by elastic relaxation of residual stresses and is therefore 
used to calculate the original residual stresses. One of the unique strengths of this method is that it provides a full 
cross-sectional map of the residual stress component normal to the cross section. The contour method is useful 
for studying various manufacturing processes such as laser peening [5-10], friction welding [6,7,11-13] and fusion 
welding [14-21]. Some of the applications are quite unique such as mapping stresses in a railroad rail [22], in the 
region of an individual laser peening pulse [23], and under an impact crater [24]. 
 
The only common methods that can measure similar two-dimensional (2-D) stress maps have significant 
limitations. The neutron diffraction method is nondestructive but sensitive to micro-structural changes [25], time 
consuming, and limited in maximum specimen size, about 50 mm, and minimum spatial resolution, about 1mm. 
Sectioning methods [26] are experimentally cumbersome, analytically complex, error prone, and have limited 
spatial resolution, about 1 cm. A limitation of the original contour method is that only one residual stress 
component is determined. Recent developments have extended the contour method to the measurement of 
multiple stress components [27-30].  
 



In an overly simplistic view, one might think that the contour method requires the assumption of a perfectly flat 
cut. Such as assumption is overly restrictive. In this paper, the actual assumptions about the cut are developed. 
Several potential error sources are shown to be removed by standard data processing. Other errors are explored 
in more detail numerically to establish procedure to minimize the errors. An experimental demonstration is given 
with a correction for errors arising because of the cut. 
 
 
THEORY 
 
This section reviews previously published theory for the contour method in order to allow for later detailed 
discussion of the assumption about the cut.  
 
The contour method [2] shown in Figure 1 is based on a variation of Bueckner’s superposition principle [31].  
 
 

 
Figure 1 Superposition principle to calculate residual stresses from surface contour measured after cutting 

the part in two [28]. 
 
In A, the part is in the undisturbed state and contains the residual stress to be determined. In B, the part has been 
cut in two and has deformed as residual stresses were released by the cut. For clarity, only one of the halves is 
shown. In C, the free surface created by the cut is forced back to its original flat shape. Assuming elasticity, 
superimposing the partially relaxed stress state in B with the change in stress from C would give the original 
residual stress throughout the part: 

)()()( CBA σσσ +=  (1) 

where σ without subscripts refers to the entire stress tensor. 
 
This superposition principle assumes elastic relaxation of the material and that the cutting process does not 
introduce stress that could affect the measured contour. With proper application of this principle it is possible to 
determine the residual stress over the plane of the cut. Experimentally, the contour of the free surface is 
measured after the cut and analytically the surface of a stress-free model is forced back to its original flat 



configuration by applying the opposite of the measured contour as boundary conditions. Because the stresses in 
B are unknown, one cannot obtain the original stress throughout the body. However, the normal and shear 
stresses on the free surface in B must be zero (σx, τxy and τxz). Therefore, C by itself will give the correct stresses 
along the plane of the cut: 
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The measured surface contour has an arbitrary reference plane, resulting in three arbitrary rigid body motions in 
defining the surface. These three arbitrary motions are uniquely determined by the need for the stress distribution 
over the cross section to satisfy three global equilibrium conditions: force in the x-direction and moments about 
the y and z axes. It is not necessary to explicitly enforce these constraints. In a finite element calculation, 
appropriate boundary conditions are applied to the cut plane, including three extra constrains to prevent rigid body 
motions. The remainder of the body is unconstrained. In the static equilibrium step used to solve for stress, the 
free end of the body will automatically translate and rotate such that the equilibrium conditions are fulfilled. 
 
A small convenience is taken in the data analysis. Modeling the deformed shape of the part for C in Figure 1 
would be tedious. Instead, the surface is flat in the finite element model, and then the part is deformed into the 
shape opposite of the measured contour. Because the deformations are quite small, the same answer is obtained 
but with less effort. 
 
CUTTING ASSUMPTION 
 
From a theoretical point of view, the relevant assumption for the superposition principle in Figure 1 is that the 
material points on the cut surface are returned in C to their original configuration. Experimental limitations results 
in two broad types of departures from that assumption. The first departure is that the surface contour 
measurement only gives information about the normal (x) displacement. So the material points are not returned to 
their original configuration in the transverse directions. The second departure is that in order for the measured 
surface contour to accurately return the material points to their original locations in the x-direction, those material 
points must have come from a common plane in the original configuration (A).  
 
A transformation of this theoretical assumption into more practical assumptions can accommodate some of these 
issues without sacrificing any accuracy. This naturally leads to considering symmetric errors separate from 
antisymmetric errors, as explained in the following. 

Anti-Symmetric Errors 
 
The issues with both transverse displacements and anti-symmetric errors can be examined by considering the 
case of shear stresses [2]. The top of Figure 2 shows a beam that was cut in half on a plane that had both normal 
and shear stresses. The two halves have different contours. The equivalent surface traction components for 
released stresses are given by xxyyxxx nTnT τσ −=−= , , where n is the surface normal vector. By a Poisson 
effect, the Ty from the released shear stress has an effect on the contour. As shown in Figure 2 in reference [2], 
the tractions for releasing σx are symmetric about the cut plane, but the tractions for releasing τxy are anti-
symmetric. Hence, the contours in Figure 2 can be decomposed into the symmetric portion caused by normal 
stress and the anti-symmetric portion caused by shear stress. 
 



 
Figure 2. Asymmetric contours can be separated into the symmetric portion and the anti-symmetric portion, 

which averages away. Shown for the example of shear stresses. 
 
 
The effect of shear stresses, and indeed all anti-symmetric errors, are removed by averaging the contours on the 
two halves.  
 
The lack of information on transverse displacements also does not cause errors. In the analysis, the surface is 
forced back (step C in Figure 1) to the original flat configuration only in the x-direction, based on the average 
contour. The shear stresses (τxy and τxz) are constrained to zero in the solution. This stress-free constraint is 
automatically enforced in most implicit, structural, finite-element analyses if the transverse displacements are left 
unconstrained. Even if residual shear stresses were present on the cut plane, averaging the contours measured 
on the two halves of part still leads to the correct determination of the normal stress σx [2]. Even when there are 
no shear stresses, there are also transverse displacements from a Poisson-type effect when normal stresses are 
relaxed. Because there was no shear stress, there is no traction associated with those displacements. Therefore, 
the solution that constrains the shear stresses to zero on the cut surface, as described above, is still correct.  
 
Averaging the contours on the two halves to remove anti-symmetric errors requires another assumption. The 
portion of the contour caused by the normal stress must be symmetric, which requires that the stiffness be the 
same on the two sides of the cut. For homogeneous materials, this assumption is certainly satisfied when a 
symmetric part is cut precisely in half. In practice, the part only needs to be symmetric about the cut within the 
region where the stress release has a significant effect. The length of this region is about 1.5 times the Saint 
Venant’s characteristic distance. The characteristic distance is often as the part thickness, but is more 
conservatively taken as the maximum cross-sectional dimension unless specific information about the stress 
variation is known [12]. 
 
Figure 3 shows another example of an anti-symmetric error that averages away. If cut path is crooked in space, 
the resulting surface contours are anti-symmetric. 



 
Figure 3. The effect of a crooked cut goes away when the two surfaces contours are averaged. 

 
Figure 4 shows another anti-symmetric effect that in principle averages away, but that should be minimized 
anyway. This time the cut is path is straight in space, but the part is moving as the stresses relax. In Figure 4, the 
movement occurs because the part is not clamped symmetrically. An experimental example later in this paper 
shows that the effect can be quite large. Averaging two very different contours can introduce some uncertainty, so 
both sides of the cut should be clamped to minimize such movement. It will be shown later that other errors are 
also reduced by good clamping. 
 
 

undeformed shape

deformed shape as cut
progresses and stresses relax

current location of material 
points that were on cutting 
plane in undefomred state

plane of cut

clamp

clamp
x

y  
Figure 4. Movement of the cut plane as stresses relax during cutting. In this example, this is caused by 

asymmetric clamping. 
 



Symmetric Errors 
 
There are other errors that cause symmetric effects that do not average way. Before discussing those, realize that 
some cutting errors depend on how the cut is made. So far, the only method that has been successfully applied 
for the contour method is wire Electric Discharge Machining (EDM). Thus, this discussion focuses on EDM 
cutting. 
 
Several of the symmetric error sources are relatively straightforward: 

• Local cutting irregularities, such as wire breakage or overburning at some foreign particle. These are 
usually small length scale (order of wire diameter) and are removed by the data smoothing process or 
manually from the raw data 

• Change in width of cut. This can occur in heterogeneous materials since the EDM cut width varies for 
different materials. Sometimes a change in the part thickness (wire direction) can also cause this. 

• Wire vibration causing a “bowed” cut [2]. This can usually be avoided by using good settings on the wire 
EDM. 

• Stresses induced by the cutting process can cause errors. Such errors have been studied for wire EDM 
cutting for use with incremental slitting (crack compliance) [32]. Such effects are generally negligible if 
“skim cut” or “finish cut” EDM settings are used. Those are low power settings that give higher accuracy 
and a better surface finish. 

 
The symmetric error sources listed above do not depend on stress magnitude, which leads to a straightforward 
approach to the issue. A test cut in stress free material would have no contour caused by stresses but would 
show these errors. Any such error could then be corrected for by subtracting the error off of the measured 
contour. Most good practitioners make such a test cut standard practice. The simplest way to achieve a nearly 
stress free test cut is to use the actual test part. After surface contours are measured, one can cut a thin layer off 
of one of the cut surfaces. The relevant stress components are zero on the free surface and very small if the test 
cut occurs only a small distance from the original cut surface. The surface contour is measured on the new 
surface of the larger piece. 
 
Some of those assumptions, primarily the constant cut width, may be less accurate near the edges of the cut 
surface. For example, the EDM cut width may flare out a little bit at the top and bottom of the cut. Contour results 
can therefore be quite uncertain near the edges of the cut and should not be generally be reported in that region. 
With special care, good results have been achieved very close to the edges [4,23].  
 
The contour cut also cannot re-cut previously cut surfaces. This is one of the main reasons that EDM is used for 
the contour method. In principle, EDM might slightly recut the surface when cutting into a compressive stress. In 
practice, as sketched in Figure 5, constraint at the cut tip minimizes the amount the cut surfaces can pinch in 
close behind the wire.  

 
 

 
Figure 5. Even cutting into compressive stress, constraint limits the amount the cut surfaces can pinch in 

close behind the wire. 
 
Most of the rest of this paper will concern a particular symmetric error that can cause significant bias in the 
contour method results if it is not dealt with. This error, called the “bulge” error, is illustrated in Figure 6. The 
cutting process makes a cut of constant with w in the laboratory reference frame. As the cutting proceeds, 
stresses relax and the material at the tip of the cut deforms. The material at the cut tip that was originally w wide 
has stretched. However, the physical cut will still be only w wide, which means that the width of material removed 
has been reduced when measured relative to the original state of the body. Since the fundamental assumption is 
that step C of Figure 1 returns the material points to their original configuration, this causes an error that will not 



be averaged away. The effect is obviously dependent on the stress state at the cut tip relative of the original 
stress state. That change in stress can be minimized by securely clamping the part. Also, this effect is a result of 
the finite width of the cut; a zero-width crack causes only effects that average away, as shown in Figure 4.  
 
Considering anti-symmetric effects that average away  as well as the bulge and other asymmetric errors, the 
fundamental assumption about the cut can be more compactly stated. The cutting process is assumed to remove 
a constant width of material when measured relative to the state of the body prior to any cutting.   
 

The Bulge Error: 
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Figure 6. The “bulge” error. As cutting proceeds, the material at the tip of the cut deforms from stress relief. 

This changes the width of the cut relative to the original state of the body and causes errors. 
 
Cut tip plasticity can also cause symmetric errors. Such errors violate the assumption that stress relaxation is 
elastic, rather than assumptions about the cut, but they cause very similar effects. Like the bulge error, this effect 
also depends on the stress state at the cut tip. Thus, any efforts to minimize the bulge error should also reduce 
plasticity errors. An FEM study showed that plasticity errors were generally small when clamping during cutting 
was secure [33].  Another study that looked at experimental results showed some significant errors that were 
explained, using FEM, by plasticity effects [34]. However, those experimental errors might have been a 
combination of both bulge and plasticity errors. 

Summary of Assumptions 
• The cutting process does not recut surfaces that have already been cut. 
• The stiffness of the part is symmetric with respect to the cut within the regions where stresses are relaxed 

by the cut 
• The cut removes a finite width of material when measured relative to the state of the body prior to any 

cutting. 
• There is no plasticity at the cut tip 

 
 
The ideal cut would be zero width, introduce no stresses, and allow no plasticity at the tip of the cut. 
 
FINITE ELEMENT STUDY 



Finite Element Models 
The bulge error was estimated using two-dimensional ABAQUS [35] finite element simulations of sequentially 
cutting a slot into a beam, similar to Figure 6. A known field of residual stresses was used as an initial condition 
for the model using a user-defined subroutine. The cutting process was then simulated by sequentially removing 
elements. After each step, the displacement of appropriate material points originally on the cut plane were 
recorded to estimate errors in the planar cut assumption. Finally, residual stresses were calculated using the 
principle of Figure 1 but including the errors, and the difference between the calculated residual stresses and the 
known residual stresses were analyzed. 
 
Several assumptions were used for the simulations. Isotropic, linear elastic material behavior is assumed 
throughout the analysis. It is also assumed that the cut is perfectly planar in space; hence, the deviations come 
only from defomation of the material. For meshing convenience, a square slot bottom was used. Since an EDM 
cut has a round bottom, this assumption may introduce errors. Dimensions of the beam were normalized to a 
beam thickness, t, of one unit. A total beam length of four units was chosen in order to minimize any effects from 
the free ends. Plane stress deformation was assumed.  
 
Legendre polynomials were chosen for the residual stresses because Legendre polynomials of order two and 
greater automatically satisfy force and moment equilibrium over the beam cross section. For each simulation, the 
appropriate Legendre polynomial was used to initialize σx(y) in the region of the cut. The other two stress 
components, σy and τxy , were initialized to zero in the region of the cut. The stresses elsewhere in the beam were 
specified such that local equilibrium and the stress-free boundary conditions were satisfied everywhere. The 
residual stress distributions were all normalized to a peak value of unity. 
  
The choice of the elastic modulus E has no effect on the final stress values calculated from the displacements, 
since it proportionally affects both the error magnitude and the actual contour. Nonetheless, an E of 1000 was 
used rather in order to give reasonably scaled displacements; the σmax/E ratio of 0.001 is consistent with typical 
residual stress magnitudes in metals.  Since E has no effect on the final stresses calculated, plane strain can be 
simulated by replacing E with E/(1-ν2); plane stress and plane strain will give the same results if the analysis is 
consistent.  
 
The deviations from a planar cut assumption were estimated by considering the displacement of the material point 
where cutting is about to occur. Referring to Figure 6, the material point at the bottom corner of the slot is the next 
to be cut. The material point that was originally on the plane where cutting is occurring has displaced. In the 
actual cutting process, the wire will cut this point flush with the original cut plane. Therefore, the deviation from the 
flat cut assumption is given by the displacement of this material point normal to the cut plane, in the x direction. 
The y-displacement is not important. 
 
A Lagrangian coordinate system is used to track the deformations. The displacements u(x,y,a) refers to the x-
direction displacement after the cut is at depth a of the material point that was at the coordinate (x,y) in the 
original configuration of the system. Because the only displacement that is relevant for this simulation is the 
displacement of points at the fixed value of x for the cut plane, the displacement is reported just as u(y,a). The 
final contour of the cut surface is given by the displacements after the cut and is designated by u(y,final). 
The results of the sequential cutting simulation were used as input to a subsequent analysis to calculate the effect 
of the cutting deviation on the residual stress measurements of the contour method. The final contour of the cut 
surface from the simulation was combined with the cutting error to give the displacement boundary conditions 
used to calculate the residual stress per the third part of Figure 1:  
 

( ) ( ) ( )( )aayufinalyuyu ,, =−−= , (1) 

 
where the initial negative sign appears because calculating the original residual stresses requires applying the 
opposite of the measured contour.  
 
This stress calculation makes two additional assumptions.  The small displacements of the material on the cut 
plane were not accounted for in the material removed for the simulation. The simulation removed elements with 
edges that were originally on the cut plane but were no longer on the cut plane at the time of removal. Because 
the displacements are small, the difference has a negligible effect on the results of the stress calculations. An 



exact simulation of the material removal would require adaptive remeshing or some other process, and such extra 
effort is not justified by the small changes that would result.  

Simulation Results: General Features of the Contour Method and the Errors 
There are several interesting features in almost all of these simulations. Typical deflection and cutting error 
profiles are shown in Figure 7 for a simple clamping arrangement: on the top and bottom surfaces of the beam at 
one thickness away from the cut, symmetric on both sides of the cut. The slot width is 0.01. The quadratic 
Legendre polynomial stress is used. The bulge error has a shape that is not the same as the stress profile. 
Rather, the bulge error is approximately proportional to the stress intensity factor, KIrs, at the cut tip from the 
accumulated effect of releasing residual stress.  Combining the bulge error with the theoretical contour gives the 
contour including the error. The general shape of the contour with cutting error closely parallels that of the 
deflection without cutting error. The deflection profile has a slightly smaller peak when the cutting error is 
included.  It also shows a phase shift compared to the profile without cutting error, with the peak values shifted 
closer to the beginning of the cut.  Near the end of the cut, the deflection error rises sharply, causing a large 
difference between the two profiles. 
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Figure 7. Bulge error for a FEM simulation of a quadratic stress profile. 

 
The stress profiles in Figure 8  show most of the same features as the deflection profiles.  The stress error is high 
near the beginning of the cut and very high near the end of the cut.  This matches with the experiences in the 
actual measurement process, where the edges often show erratic behavior. However, the effect seems to be 
exaggerated in these simulations. More work is needed to improve the fidelity of the simulations at the beginning 
and end of the cut. Near the middle of the cut, the stress error is quite reasonable and seems to follows a smooth 
curve.  Again, it does not seem to be simply related to the initial stress distribution, though a great deal of the 
error seems to be a phase shift between the profiles with and without cutting error. The peak compressive stress 
is slightly reduced in magnitude. 
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Figure 8. Stresses calculated from the contours of Figure 7 showing the stress error caused by the bulge 

error. 

Effect of Clamping 
A variety of clamping arrangements were simulated by constraining various nodes in the FEM model from 
moving. Because of the difficulty of achieving experimental clamping similar to the perfect constraint, only 
qualitative conclusions are presented: 

o A significant benefit is achieved by going from clamping on one side of the cut to clamping both sides of 
the cut. 

o In the simulations, a significant benefit is achieved by clamping the material all along the cut rather than 
just at the top and bottom surfaces. However, this is difficult to achieve experimentally. 

o Modest but diminishing benefits are achieved by moving the clamping closer to the cut. 

Effect of Slot Width 
Another simulation examined the effect of slot width on the error. A zig-zag stresses profile typical of beam 
bending was used as the initial stress. The beam was clamped symmetrically on both sides of the cut.  The FEM 
mesh was adjusted to give different slot widths. Figure 9 shows curves of bulge error as a function of cut depth 
relative to the beam thickness. The final contour (without error) is also plotted to illustrate the scale of the errors. 
The bulge error gets larger for larger cut width. The peak magnitude of the bulge error was extracted from each 
curve in Figure 9, normalized by the peak-to-valley magnitude of the contour, and plotted versus slot width in 
Figure 10. The peak error increases with slot width, with the slope being greater for narrow slots. A typical 
experimental slot width, taken from the beam tests to be discusses in the next section, is indicated in order to 
place the errors in proper context. 
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Figure 9. Bulge error as a function of cut depth for different slot widths relative to the beam thickness. The 

final contour (without error) is also plotted to illustrate the scale of the errors. 
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Figure 10. The peak values of bulge error from Figure 9 are normalized relative to the peak-to-peak 

amplitude of the measured contour and plotted versus slot width.  
 
PROCEDURE FOR CORRECTING BULGE ERROR 
The previous analysis, when applied to realistic slid widths, shows that the errors in the residual stress 
measurement are very reasonable, especially when compared to the errors in other residual stress measurement 
techniques.  However, a method to correct these errors could improve the measurements by this technique. 
 
An iterative finite-element analysis is proposed to correct the deflection error.  The basic principle is to reverse the 
previous analysis technique.  The experimentally measured or recorded profile is used to calculate residual 
stress.  Since the errors in the contour method are relatively small, and the measurable deflection profile closely 



parallels the theoretical profile, the calculated stress profile can be used as an initial guess for the theoretical 
profile. Then the FEM simulation described above is used to estimate the bulge error. The bulge error is used to 
correct the measured contour and then to calculate stresses now including an estimated bulge error. This process 
is then repeated until the stress converges. 
 
EXPERIMENTAL 
 
The bulge error and the iterative correction are examined on two bent beam specimens with known residual 
stress profiles. To prepare the specimen, strain gages were attached to the top and bottom of a stress-relieved 
stainless steel beam, 30.0mm deep.  Residual stresses were induced in the beam by loading it into the plastic 
range using a four-point bend fixture.  On removal of the load, the beam unloaded elastically, leaving permanent 
plastic deformations and substantial axial residual stresses.  During this loading and unloading, the total load and 
corresponding strains were measured.  The profile of the residual stresses was calculated from the measured 
strain data using the stress-strain curve identification method described by Mayville and Finnie [36].  More details 
on these specific beams are given elsewhere [2,37]. 
 
The first beam, beam A, was used as a known stress specimen for measurements using incremental slitting 
(crack compliance). As is standard with the slitting method [38], the beam was only clamped on one during the 
cutting as shown in Figure 11. The one sided clamping will make for a larger bulge error and different contours on 
the two halves of the beam. Before destructive measurement, the residual stresses in the beam were measured 
by neutron and x-ray diffraction, and within the associated uncertainty ranges, the results agreed with those of the 
stress-strain curve calculation [37,39]. A 200 µm diameter hard brass wire was used for the cutting. The cutting 
was done in 36 steps, at approximately 0.8mm intervals to a final depth of 29.26 mm, 97.5% of the beam depth.  
After cutting, the width of the cut was measured as 267 µm. Unfortunately, because the beam had not been cut all 
the way through, the remaining ligament was fractured by hand. That left the final 0.74 mm of the surface without 
a usable contour. 
 

 

 
Figure 11. Beam A just prior to EDM cutting for the slitting method. The central section of the beam is 30 

mm thick and 10 mm wide. 
 
The second beam, beam B, was measured with the contour method [2]. As shown in Figure 12, it was clamped 
on both sides of the cut. This time the EDM cut used a 100 µm diameter zinc-coated brass wire and gave a cut 
width of 140 µm. The beam was cut all the way in half. 
 
 
 



 
Figure 12. Beam B was clamped on both sides of the cut prior to EDM cutting. 

  

Beam B 
 
Beam B is examined first because it was cut under more ideal conditions: a narrow slot and clamped on both 
sides of the cut. The contours on the two halves of the beam were very similar, so the average was used for all 
subsequent calculations. By symmetry, only half of the beam was modeled (in 2D) with FEM. Displacement 
boundary conditions were applied on the top and bottom surfaces of the beam where the clamps from Figure 12 
were located. Figure 13 shows the contours calculated with the iterative correction procedure. Because the 
correction is small, the correction has converged by the second iteration. Figure 14 shows the stress results 
compared with the stresses predicted in the bend test. The correction, while not large, has moved the contour 
results closer to the bend test prediction. Now the results generally agree within the uncertainty in the bend test 
prediction. 
 

 
Figure 13. Iterative correction to measured contour on beam B. 
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Figure 14. Contour method results before and after bulge correction compared with the prediction from the 

bend test. 

Beam A 
 
Because it was cut in such a non-ideal way for the contour method, with a wide slot and one sided clamping, 
beam A represents a challenging test for the iterative correction. Figure 15 shows the drastic difference between 
the contours measured on the two halves of the beam. Figure 16 shows results from beam A calculated using the 
average contour as well as using the contour from each half individually. The results are compared with bend test 
prediction and slitting and neutron diffraction measurements [39]. In spite of the large difference in the contours, 
the stresses calculated using the average contour do an impressive job of matching the bend test prediction and 
independent measurements. 
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Figure 15. The surface contours measured on the two halves of beam A are very different. 
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Figure 16. Stress results from beam A calculated using the average contour as well as using the contour 
from each half individually. Results compared with bend test prediction and slitting and neutron diffraction 

measurements. 
 
A full 2D (no symmetry) FEM model was used to perform the iterative correction on the beam A results. 
Displacement boundary conditions were applied on the top and bottom surfaces of the beam where the clamps 
from Figure 11 were located. The contours had to be extrapolated to cover the final 0.74 mm of the surface that 
had been fractured off. 
 
Because the contour on the free side of beam A over-predicted the stress magnitude, see Figure 16, the 
correction was also over-predicted, which led to a non-convergent solution. So for the first iteration only, half of 
the predicted correction was applied. Figure 17 shows that the correction was then reasonably stable and 
converged after several iterations. The average of the last two iterations compares quite well with the stresses 
predicted by the bend test. 
 

-200

-150

-100

-50

0

50

100

150

200

250

0 5 10 15 20 25 30

M
Pa

mm

Initial
Iter. 1
Iter. 2
Iter. 3
Iter. 4
Iter. 5
Iter. 6

-150

-100

-50

0

50

100

150

0 5 10 15 20 25 30

Last 2 iters.

Bend test

 
Figure 17. Iterative correction applied to the unclamped half of beam A. 

 
Considering the starting point for the clamped half of beam A, a good result from the iterative correction was not 
expected.  The results in Figure 15 and Figure 16 do not even have the correct shape. Figure 18 shows the 
iterative correction. Even though the results are poor at the ends of the beam, the central results slowly converge 
towards the expected results from the bend test analysis.  
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Figure 18. The iterative correction applied to the clamped half of beam A. 

 
DISCUSSION 
 
Both the bulge effect and plasticity errors (only briefly mentioned in this paper) are apparently dependent on the 
stress state at the cut tip, which can be characterized by the intensity factor, KIrs, at the cut tip from the 
accumulated effect of releasing residual stress. Similar strategies could be used for both effects. More secure 
clamping, e.g., [20], would experimentally minimize the errors. Analytical corrections based on fracture mechanics 
analysis might be successful. Because of the dependence on KIrs, such errors will depend on the direction of the 
cut. 
 
Although the bulge error decreases for decreasing cut width, other errors might increase. Some difficulties getting 
good cuts with wire under 100 µm diameter have been observed. 
 
The iterative correction procedure using FEM is promising. Some improvements need to be made on handling the 
beginning and end of the cut. The procedure is conceptually straightforward and was demonstrated in 2D. There 
is no conceptual difficulty in applying the procedure in 3D, but keep track of displacements at all the correct nodes 
for each cut depth would be tedious. A scripting procedure could simplify matters. Scripting interfaces are now 
available for many commercial finite element codes. 
 
CONCLUSION 
 
The assumptions about the cut for the contour method are 

• The cutting process does not recut surfaces that have already been cut. 
• The stiffness of the part is symmetric with respect to the cut within the regions where stresses are relaxed 

by the cut 
• The cut removes a finite width of material when measured relative to the state of the body prior to any 

cutting. 
• There is no plasticity at the cut tip  

 
Deviations from these assumptions can cause errors: 

• Cutting errors can be divided into errors that cause perturbations to the measured contours that are anti-
symmetric with respect to the cut plane, and those that are symmetric. Anti-symmetric errors are removed 
by averaging the contours measured on the two halves of the part. Symmetric errors do not average 
away. 

• The bulge error, a symmetric error, tends to cause stress profiles to show both a reduced peak stress 
magnitude and a spatial shift of the peaks 

• The bulge error depends on the direction of the cut 
• The bulge error is reduced the more securely material near the cut is clamped 



• The bulge error decreases for decreasing slot width 
• The bulge error can be modeled with FEM and an iterative correction is possible. 
• Larger errors are expected at the beginning and end of the cut. 

 
The ideal cut would be zero width, introduce no stresses, and allow no plasticity at the tip of the cut. 
 
Some conclusions can be made about best practices for the contour method: 

• The part should be clamped securely on both sides of the cut during cutting 
• A stress-free test cut should be used as a control check on cutting assumptions. The test cut can be 

achieved after the contour measurement by cutting a thin slide off of the cut surface. 
• Contour results are uncertain near the edges of the cut and should not be reported in that region unless 

special care is used to get better results there. 
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